Submillimetre Observations of Debris Disks

Jane Greaves
St Andrews University, UK

Norman Lockyer Fellow of the Royal Astronomical Society

the point of it

- submillimetre imaging of debris disks can tell us about:
 - outer bounds of planetary systems
 e.g. compared to disks around protostars
 - any 'missing' disk population
 i.e. cold disks
 - large structures related to planets on large orbits (beyond Neptune...)

what's observed

- submm observations pick up the thermal emission from cold dust grains
 - modelling the SED shows the grains are a few microns up to centimetres (or more) in size
 - grains should have fallen in the star due to drag forces... evidence of colliding comets
 - signal is optically thin (so traces mass) and isthe photosphere (minimal calibration errors)

- e.g. SCUBA:
 observes at 450 and
 850 µm wavelengths
 simultaneously
 - beam size = 8-15"
- sensitive to mJy fluxes... but still need to observe for tens of hours to get deep images
 - especially at 450 µm

(1) Outer Bounds

- observing with 8-15" beams limits us to nearby stars... but it's the only way to detect outer bounds of planetary systems
 - finding mostly large examples!
 - only one is as small as the Sun's Kuiper Belt,
 with r ~ 50 AU
- imaging is important, as fitting the SED can give significant size errors
 - see Sheret et al. (2004) on different grain models

famous examples, all to same physical scale

τ Ceti ε Eridani Vega (α Lyr) Fomalhaut (α PsA) β Pic

 there are now five examples of debris disks imaged around Sun-like stars

• η Corvi (F2)	r _{out} = 150 AU	t ~ 1 Gyr
• HD 107146 (G2)	r _{out} = 150 AU	t ~ 0.1 Gyr
• τ Ceti (G8)	r _{out} = 55 AU	t = 10 Gyr
• ε Eri (K2)	r _{out} = 100 AU	t = 0.85 Gyr
 AU Mic (M1) 	r _{out} < 70 AU (submm)	t ~ 0.01 Gyr

- these are similar dimensions to the dense parts of 'proto-planetary' disks
 - bodies like Pluto may take Gyr to grow at these radii (Kenyon & Bromley 2004)

(2) Missing disks

- the submm is sensitive to cold disks
 - missed even by Spitzer? disk excess is small compared to the photosphere for $T_{dust} \le 40 \text{ K}$
 - very accurate calibration needed to be sure an excess is real; also the true photosphere is uncertain for K and M dwarfs
- Sun-like stars are more likely to have cold 'missed' disks
 - IRAS excesses for 60% of nearby A stars!

G-star survey

- ongoing with SCUBA... unbiased survey of G dwarfs 10-15 pc from the Sun
 - one IRAS detection confirmed
 - one to three new detections, out of 13 stars
 - one ISO source not confirmed (HD 72905)
 - unusual object... 'superflare' star
- if all 4 SCUBA results are real, detection rate rises to ~30%!
 - versus 7% for G stars observed with IRAS/ISO

(3) Planets on large orbits

- two sorts of evidence
 - inner holes in most of the disks... dust is ejected by planets?
 - possibly just grains shrinking due to ice sublimation... but temperatures don't quite match
 - structure within the dust belts
 - if due to planets, 'lumps' should be associated with particular resonances
 - could pinpoint the planet position, in advance of imaging missions!

A stars

 Vega: planet migrated to 65 AU? (Mark Wyatt's talk)

plus 1.3 mm interferometry by Koerner et al. (OVRO), Wilner et al. (PdBI)

A stars

 Vega: planet migrated to 65 AU? (Mark Wyatt's talk)

plus 1.3 mm interferometry by Koerner et al. (OVRO), Wilner et al. (PdBI)

G stars

HD 107146
 (Williams et al.)
 a young G2V
 at 28 pc

 τ Ceti (G8V)
 faintest disk so far imaged with SCUBA (5 mJy at 850 μm)

τ Ceti – Solar analogue?

- τ Ceti is a G8V star, 3.65 pc away
 - from VLTI, stellar radius implies age of 10 Gyr (di Folco et al. 2004)
 - twice the Sun's age, so surprising the comets haven't all ground each other down to dust?

τ Ceti could spoil everything...:-(

- modelling the collisional cascade leads to a population of 1.2 M_{earth} in bodies up to 50 km in size (generating 5 x 10⁻⁴ M_{earth} in dust) (Greaves et al. 2004)
- the Kuiper Belt has 12-20 times less material, using comet masses or dust fluxes...
- if there are any planets around τ Ceti, might they have undergone heavy bombardment for the whole 10 Gyr?
 - we don't know yet which of the 2 stars is 'normal'!!

ε Eridani

- ε Eri is a K2V star, 3.22 pc away
 - thanks to the large-ish disk, we have the most detailed view of this among all the debris stars
 - we have collected SCUBA data from 1997/8 (published) up to 2002 (in prep.)
 - new data confirms the structure seen at 850 μm
 - imaged also now at 450 µm → same structure
 - see also 350 and 1200 μm images from Wilner et al. (SHARC II on CSO), Schütz et al. (SIMBA on SEST)

- compare the 450 and 850 micron images
 - same ring structure and similar peak locations
 (differ by 2-7", consistent with expectation from noise)

new results:

- central beam has slightly less flux than we thought
- centre of 850 micron emission is offset 2" from the star
- could this be due to the inner planet at ~3.5 AU?
 - can force eccentricity to the dust orbits (Wyatt et al. 1999)

- the long time-line lets us try two things:
 - check for background sources, because the star has moved 5" to the right (proper motion)
 - make a first attempt at looking for rotation of the ring features
 - this is going to be TENTATIVE, because the suspected outer planet is at ~40-60 AU, and resonant points in the ring should rotate at only ~1° per year
 - hence we looked for a consistent shift of several major ring features

- background objects?
 - compare the image from the 1997/8 data
 and the contour from the 2000-2002 data
 - arrows mark two
 lumps that haven't
 shifted to the right

- ring rotation??
 - looking for clumps
 that have shifted with
 proper motion and
 rotated around... this
 gives different shifts
 around the ring
 - tentative evidence of counter-clockwise rotation at 1-2° per year?

shaded – old clump positions unfilled – new positions

Summary

- the comet zones are larger around most of these stars than around the Sun
- we may have missed most of the debris disk population around Sun-like stars
- submillimetre imaging can really work as a method for detecting distant planets

the future: a 30m-class telescope operating to 200 µm, with <2" beam...

